110 research outputs found

    Interaction of 18-residue peptides derived from amphipathic helical segments of globular proteins with model membranes

    Get PDF
    We investigated the interaction of six 18-residue peptides derived from amphipathic helical segments of globular proteins with model membranes. The net charge of the peptides at neutral pH varies from -1 to +6. Circular dichroism spectra indicate that peptides with a high net positive charge tend to fold into a helical conformation in the presence of negatively charged lipid vesicles. In helical conformation, their average hydrophobic moment and hydrophobicity would render them surface-active. The composition of amino acids on the polar face of the helix in the peptides is considerably different. The peptides show variations in their ability to permeabilise zwitterionic and anionic lipid vesicles. Whereas increased net positive charge favours greater permeabilisation, the distribution of charged residues in the polar face also plays a role in determining membrane activity. The distribution of amino acids in the polar face of the helix in the peptides that were investigated do not fall into the canonical classes described. Amphipathic helices, which are part of proteins, with a pattern of amino acid distribution different from those observed in class L, A and others, could help in providing newer insights into peptide-membrane interactions

    Development of an optogenetic toolkit for neural circuit dissection in squirrel monkeys

    Get PDF
    Optogenetic tools have opened a rich experimental landscape for understanding neural function and disease. Here, we present the first validation of eight optogenetic constructs driven by recombinant adeno-associated virus (AAV) vectors and a WGA-Cre based dual injection strategy for projection targeting in a widely-used New World primate model, the common squirrel monkey Saimiri sciureus. We observed opsin expression around the local injection site and in axonal projections to downstream regions, as well as transduction to thalamic neurons, resembling expression patterns observed in macaques. Optical stimulation drove strong, reliable excitatory responses in local neural populations for two depolarizing opsins in anesthetized monkeys. Finally, we observed continued, healthy opsin expression for at least one year. These data suggest that optogenetic tools can be readily applied in squirrel monkeys, an important first step in enabling precise, targeted manipulation of neural circuits in these highly trainable, cognitively sophisticated animals. In conjunction with similar approaches in macaques and marmosets, optogenetic manipulation of neural circuits in squirrel monkeys will provide functional, comparative insights into neural circuits which subserve dextrous motor control as well as other adaptive behaviors across the primate lineage. Additionally, development of these tools in squirrel monkeys, a well-established model system for several human neurological diseases, can aid in identifying novel treatment strategies

    A prospective compound screening contest identified broader inhibitors for Sirtuin 1

    Get PDF
    Potential inhibitors of a target biomolecule, NAD-dependent deacetylase Sirtuin 1, were identified by a contest-based approach, in which participants were asked to propose a prioritized list of 400 compounds from a designated compound library containing 2.5 million compounds using in silico methods and scoring. Our aim was to identify target enzyme inhibitors and to benchmark computer-aided drug discovery methods under the same experimental conditions. Collecting compound lists derived from various methods is advantageous for aggregating compounds with structurally diversified properties compared with the use of a single method. The inhibitory action on Sirtuin 1 of approximately half of the proposed compounds was experimentally accessed. Ultimately, seven structurally diverse compounds were identified

    Progressive hemorrhage and myotoxicity induced by echis carinatus venom in murine model: neutralization by inhibitor cocktail of n,n,n `,n `-tetrakis (2-pyridylmethyl) ethane-1,2-diamine and silymarin

    Get PDF
    Viperbite is often associated with severe local toxicity, including progressive hemorrhage and myotoxicity, persistent even after the administration of anti-snake venom (ASV). In the recent past, investigations have revealed the orchestrated actions of Zn2+ metalloproteases (Zn(2+)MPs), phospholipase A(2)s (PLA(2)s) and hyaluronidases (HYs) in the onset and progression of local toxicity from the bitten site. As a consequence, venom researchers and medical practitioners are in deliberate quest of potent molecules alongside ASV to tackle the brutal local manifestations induced by aforesaid venom toxins. Based on these facts, we have demonstrated the protective efficacy of inhibitor cocktail containing equal ratios of N,N,N', N'-tetrakis (2-pyridylmethyl) ethane-1,2-diamine (TPEN) and silymarin (SLN) against progressive local toxicity induced by Echis carinatus venom (ECV). In our previous study we have shown the inhibitory potentials of TPEN towards Zn(2+)MPs of ECV (IC50: 6.7 mu M). In this study we have evaluated in vitro inhibitory potentials of SLN towards PLA(2)s (IC50: 12.5 mu M) and HYs (IC50: 8 mu M) of ECV in addition to docking studies. Further, we have demonstrated the protection of ECV induced local toxicity with 10 mM inhibitor cocktail following 15, 30 min (for hemorrhage and myotoxicity); 60 min (for hemorrhage alone) of ECV injection in murine model. The histological examination of skin and thigh muscle sections taken out from the site of ECV injection substantiated the overall protection offered by inhibitor cocktail. In conclusion, the protective efficacy of inhibitor cocktail is of high interest and can be administered locally alongside ASV to treat severe local toxicity

    Bayesian computation: a summary of the current state, and samples backwards and forwards

    Full text link
    corecore